If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2-30x+102=0
a = 2; b = -30; c = +102;
Δ = b2-4ac
Δ = -302-4·2·102
Δ = 84
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{84}=\sqrt{4*21}=\sqrt{4}*\sqrt{21}=2\sqrt{21}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-30)-2\sqrt{21}}{2*2}=\frac{30-2\sqrt{21}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-30)+2\sqrt{21}}{2*2}=\frac{30+2\sqrt{21}}{4} $
| -3u(u-7)(u+3)=0 | | 5(4x.7)-2(3x.1)= | | 1080=(x+30)(x+24) | | 5(4x.7)-2(3x.1)=-5 | | 8x-(2x-3)=21 | | 7m+30m=7 | | 8x-28=5x+12 | | 10x+28=5x+12 | | -3(x+5)+105=20+25 | | 12y+50=16y-10 | | 3.5x+x=45 | | 4+5m=24 | | -(x-3)+3x+2=5x-4 | | 9-(-5r+9)=4 | | 5^9x=25^4x+2 | | 9+8=5-4(x+4) | | 9+8=5-4(x=4) | | 1/3t=15=30 | | Y=x+5/x-1 | | X-3y+11=0 | | 4m×4=40 | | 3-5(x+4)=4+9 | | 125^9x-2=150 | | x=-16^2+40x+3 | | x+4(x+1)=344 | | 64=x^2+16x | | 2x-3=6(x-2) | | 73=14h−72 | | x2=3+6x | | 0.27=3/x | | 0.5^x=4.75 | | 4x2+12x=3 |